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The electrostatic potential energy at a plane surface of a point 
ionic crystal: 11. Numerical results for an ion near the 
(100) KCI surface 
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Abstract. A simple formula is derived for the calculation of the electrostatic potential of 
an ion near the (100) surface of a KCI crystal using a lattice sum method. The potential 
is found to be short ranged, tending to zero far from the surface. The potential is identical 
to that obtained from the solution of the Poisson equation. Although rapid convergence 
is achieved in the present method, it is still many times slower than the expression derived 
from the Poisson equation. At an adsorption site, the electrostatic potential was found to 
be 0.3 eV. To get the right result from a direct version of the lattice sum, and lo4 terms 
must be taken. 

1. Introduction 

The electrostatic potential of a univalent ion in the vicinity of the surface of an ionic 
crystal and the binding energy of the adsorbed ion are important quantities in the 
study of surface stability (Smith 1982, 1986) and its dynamical transformation by way 
of surface diffusion, crystal growth and evaporation (Chernov and Bulakh 1981, Cheng 
er al 1986). On an unrelaxed surface, the binding energy of an ion is the electrostatic 
potential energy of the ion at a distance from the surface layer equal to the inter-ionic 
separation in the lattice (contact distance) and such positions, if directly above a 
surface ion, are known as the adsorption sites. 

There are two equivalent methods of calculating the electrostatic potential. One 
can be defined in terms of the Poisson equation and the other by lattice summation. 
The electrostatic potential at a distance z above a one layer ZD array of KCI with 
infinite widths was calculated using the Poisson equation approach (Lennard-Jones 
and Dent 1928) and the potential above the (100) surface of an infinitely thick slab 
of KCI was then generalised in terms of a series summation whose terms are those 
contributed from the ZD array. This potential 4 ( r ) ,  as defined by ( l ) ,  was found to 
be short ranged, i.e. it decays rapidly to zero over a short distance above the surface layer 
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where a is the unit cell dimension and the summation is only over odd layers of ions 
n ,  and n,. along the x and y direction. Subsequently Hove (1955) has modified (1) to 

where ro is the inter-ionic separation. The sum is now over odd values between 0 and 
infinity and  the position coordinates (x, y ,  z)  are scaled by ro. Hove only considered 
the (1, 1) term sufficient for calculating potential energies near the surface. The 
electrostatic potential energy of a univalent ion at its equilibrium adsorption site above 
a KC1 crystal surface was found to be about 0.3 eV. However this approach failed to 
calculate the electrostatic potential energy of an  ion near the polar (111) face of an  
NaCl type crystal because of special mathematical difficulties (Lennard-Jones and  
Dent 1928). 

On the other hand, lattice summation methods are more often adopted to calculate 
the electrostatic potential energy of an ion inside and  above the surface of an  ionic 
crystal. Essentially the problem is to evaluate the expression 

The distance Ir - rjl is the separation between the surface ion with position vector r 
and the lattice ion with charge qj  and position vector rj. Direct summation of (2) for 
such a 2~ (monolayer) array of ions requires lo4 terms for good convergence (Schwalm 
1982). However, fast convergence of the lattice sum can be achieved by means of an  
integral transform of l / l r -  r,J in terms of, for example, the theta function (Hoskins er 
a1 1977). This approach is also of mathematical interest as it turns out to be part of 
the studies of higher-dimensional analogues of the Riemann &‘ function (Glasser and  
Zucker 1980). One of us has recently shown that the transformed expression for both 
surface and  bulk potential contains two components. One is a quickly converging 
series in terms of the complementary error function. For a finite crystal whose unit 
cell dipole moment is zero, the second component is dependent on its size and shape. 
However this term seems computationally complicated (Smith 1983). For any crystal, 
whose unit cell chosen has a non-zero dipole moment and  as a result contains polar 
faces, this second component is divergent. We have also a clearer exposition of this 
shape dependent or divergent term (Smith 1986). 

In this study, we present a simple lattice sum electrostatic potential for a particular 
case of the (100) non-polar face of a NaCl type crystal. Numerical results, included 
from those derived in our earlier studies (Hoskin er a1 1977, Smith 1983), are compared 
with those obtained from the Poisson equation solution approach. 

2. Definition of the crystal lattice 

We consider a cubic KCI lattice containing unit cells of dimension a. Their positions 
are specified by lattice vector n = n,a, + n,a2+ nza3 where the a, are vectors along the 
principal axis of the unit cells with length equal to that of the unit cell. The lattice 
vectors of unit cells P, originate from the centre of an  arbitrarily chosen unit cell Po 
and terminate at the centre of the unit cell P,. Each unit cell contains N point charges 
q,IeJ where e is the electronic charge. The position vectors of these ions with respect 
to the centre of the unit cell are r,. For the KC1 type lattice, N = 8 and  the position 
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of the cations are (a/4,  a/4, a / 4 ) ,  (a/4,  -a/4,  - a / 4 ) ,  (-a/4, -a/4, a/4),  
(-a/4, a / 4 ,  -a /4 )  and those for the anions are ( -a/4,  a / 4 ,  a/4), (a/4, -a/4, a / 4 ) ,  
(a/4,  a/4, -a/4),  (-a/4, -a/4,  - a / 4 ) .  

The net ionic charge and  dipole moment P of a unit cell is zero so that 

and 

P = q,ri = 0. 
I 

Similarly the reciprocal lattice can be defined with unit cell vectors 6, in the direction 
of a, but magnitude equal to the reciprocal of lat\. 

3. Derivation of the surface electrostatic potential 

We want to evaluate the electrostatic potential at a position r with respect to the centre 
of Po: 

where M and N + w .  
In previous work we transformed l / r  into an  integral in terms of the Jacobi theta 

function (Hoskin et a1 1977) or complementary error function (Smith 1983) such that 
the resulting series can be evaluated with just a few terms to obtain good convergence. 

In this study, we also make use of the transformation identities ( 7 )  and (8) as used 
in (Hoskins er a1 1977, Smith 1983) 

t - ” 2  exp( - t x 2 )  d t  

and  

We first transform the double sum over n, and n , ,  F ( r ;  n z ) ,  with ( 7 )  

M M 

~ e x p [ - t ( y - m ) ~ ]  exp[-t(z-n)’] dt. (9) 

However, we will not split (9) into two terms in which one of them is the complementary 
error function as in Smith (1983). The integrand in (9) can be transformed using the 
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identity (8). Thus 

d2u exp(-u2/r) exp[2iu(nx -x) ]  exp[2iu(n,-y)] (10) 

where R 2  is the real space. Factorising exp(-u’/t) from the integral over U into that 
over t and we will demonstrate that Z,, the integral over t, 

I ,  = low t -3’2  exp[-(u2/t + t (z  - n,)’)] d t  

can be evaluated exactly by the change of variable s = - / u l / t  + J t l z  - n,l. Completing 
the square for the integrand and substituting for s we obtain 

I ,  =exp(-2(ullz-n21) t - ” ’ e ~ p [ - ( ~ t ~ z - n ~ / - ~ u l / ~ t ) ~ ]  d t  lox 
= JT exp(-2lu(lz - nzl)/lul. 

Therefore 

d2u exp[2iu,(nx -x) ]  e~p[2iu,(n,~ -y)]  exp(2luljz - nzl) I,. 
M 

x 2 exp(-2imux) exp(-2inu,). 
U,=-M n ,  = - M  

The sums over n, and ny are now finite geometric series, e.g. 

s in(2M+ l ) u v  

n , = - M  sin U, 

Equation (1  1) thus becomes 

sin(2M + l )u,  sin(2M + l )u ,  
sin uy sin U, 

X 

We note that (7) has transformed the x and y component of the space variable / r  - nl 
into U space which should likewise consist of an integer variable and a real variable 

u = r r k + u  k = ( k ,  kj,). (14) 
We can thus consider the U space as the reciprocal space with lattice composed of 
unit cells Tk whose position is specified by reciprocal lattice vector rrk and dimension 
T such that U E  To=[- r /2a ,  ~ / 2 a ] ’ ,  the reference unit cell in U space. 
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The integral in (13) can be split into a sum over k of integral over To: 

sin(2M + l)u, sin(2M + I)u, 
sin U, sin U, 

X 

The sum over k can be further split into the k = 0 term, F2( r, n , ) ,  and the rest, F , (  r, n z ) .  
Then 

sin(2m + 1)ur sin(2n + l ) u ,  
sin U, sin U, ' 

X (16) 

The contribution of F, to the surface electrostatic potential can be reduced to a simple 
expression. Thus the product from the sum of the two geometric series, with the aid 
of (13), becomes 

(17) sin U, sin U> sin U, sin uy 

Given that the rest of the integrand is smooth, at large N and k # 0, the product 
becomes .rr28( U )  + O( 1/ N )  = .rr26( .irk - U )  + 0(1/ N ) .  Upon integrating over To (Smith 
1983), Fl is converted into a simple formula 

s in(2M+ l )uX sin(2M+1)u,,-sin(2M+ - 1)u, s in(2M+ l)u, 

Now we evaluate the sum over n ,  in F,:  

The sum over n ,  is a semi-infinite geometric series with, when z > 0, a common factor 
- exp( -2~ lk l )  (Smith 1983). This sum is of the same form as that found in Lennard- 
Jones and Dent (1928). In this case, however, the sum is over successive layers of 
lattice unit cells which contain two ion layers: 

We shall now demonstrate that, upon summing over the charges ( j )  in a unit cell, by 
virtue of the charge neutrality and zero dipole moment within a unit cell and the 
symmetry of the arrangement of ions in an NaCl type lattice the net contribution to 
the electrostatic potential from F2 ( k  = 0 term) is zero. When the charge-dependent 
part is factorised, xj is replaced by x - x j  for convenience of presentation. The 
replacement, for a given (x, y ,  z ) ,  results in just a shift of (the arbitrary chosen) origin 

c 
j 

1 2 F 2 = i  2 d2ul sin U, sin(2M + l)u, sin(2M + l )u ,  
n, = -a ": = --s To ul[ 1 - exp(-2/u/)] sin U, 

N 

x exp(-2/ulz) exp(-2iu,x) exp(-2iu,y) 1 q, 

x exp[ -2( 1 U (  z, - i u.,,y, - i urx, )]. 
] = I  
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Since we are considering the term in which k = O  and U small ( U E  To),  near U =0,  we 
can expand the exponential factors in the sum over j in (21) to quadratic terms in U: 
N 

C q, exp[-2(lulzJ-iu.Vy, - ~ ~ . P , ) I  
, = I  

N 

-- qJ( l  - 2 1 u l z , + 2 u 2 z j ) ( l - 2 i u , y , - 2 u ~ y ~ ) ( 1  - 2 i u X x , - 2 u ~ x ~ )  
, = I  

N 
= qJ( 1 - 21uIzJ - 2iu,y, - 2iu,x, + SI + s2+ O( u 3 ) )  

J = 1  

where 
2 2  SI = 2 u  ZJ -2u;y;-2u:x; 

and  
S2 = 4iz,y,lul U), + 4ix,z,lul U, +4ixJyJu,u,. 

The first term in (21) vanishes because of the charge neutrality of the unit cell. The 
next three terms containing x l r  y ,  and z, (S,) also become zero because of the zero 
dipole moment condition ( 5 ) .  S2 contains terms which are odd functions of x in 
To E [ -7r/2, 7r/2I2 and  therefore they vanish upon integration over To. The remaining 
term in the sum over j is 

In the NaCl type lattice, x; = y;  = z; = a2/16. These remaining terms are zero as well. 
The higher-order terms left out are O( 1/ M )  and so vanish in the limit M + 00. Thus 
the contribution to the surface electrostatic potential from F2(r,  n , )  need not be 
considered further. Hence 

& -s 1 exp(-2~lk l (z -z , ) )  
4 ( r ) =  c 9, c f - 

j - 1  k , = - u ,  k , = - c c  Ikl 1 -exp(-2Tlkl) 
( k , , k ,  J t O  

for z - zJ > 0, i.e. above this surface. In  both (1) and (24), the form of the sum over 
the x and y directions and  the z direction reflects the symmetry of the surface. 

The error of taking a finite number of terms (small k )  for the numerical evaluation 
of (24) can be estimated as follows. Let us suppose we have summed over k vectors 
with l(kr, k , ) l <  K .  Then we have left out a contribution whose modulus obeys 

where z? is the largest z, or those at the surface layer. The sum over k can be replaced 
by an  integral 

8 exp[-27r(~-z;)K] 
[ 1 - exp( - 2 x ) ] (  z - z;") ' 

16"q'' I m d k  exp[-27r(z-z,*)k] = 
l-exp(-27r) 
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Evidently, the error given in (25) of summing over a small range of k space decreases 
exponentially with the distance away from the surface layer. Suppose z-z:=;, a 
position close to the surface layer, the error in taking only Ikl< K is -64 e x p ( - ~ K / 4 ) .  
For K = 10 (adding up  400 terms) the error is less than 64 exp( - 5 ~ / 2 ) - 2 . 4  x 
However a similar error of 1.24 x lo-* is achieved at a further distance, say z - 2; = f ,  
away from the surface with K = 5 or approximately 100 terms. 

4. Numerical results and discussion 

The electrostatic potentia1 of a univalent ion at a perpendicular distance z above a 
KCI surface with unit cell dimension a = 630 pm is obtained from both the lattice sum 
method (24) and from the solution of Poisson's equation (1). Scaling factors appropri- 
ate for ( 1 )  and (24) and for (2) were needed to convert the potentials to eV. The lattice 
sum expression (24) was evaluated over a circular shell of K 5 .  The limits for 
evaluating (1) were both taken from -5  t o  5. The choice of limits from -3 to 3 results 
in a 0.2% smaller potential. From Hove's approximation expression, (2) over -1 to 
1 (i.e. nearest-neighbouring ions along lateral directions), this unconvergent potential 
is 6% less. 

Fast convergence is achieved in both summation formulae (1) and  (24) but the 
expression from the Poisson equation (1) requires considerably fewer terms for good 
convergence. Equation ( l ) ,  however, was re-transformed back into lattice space and 
was summed only over odd layers of ions which, unlike the even layers, does not 
consist of a zero cosine factor as a result of the cubic geometry of the NaCl unit cell 
and the positioning of the cations and anions (and  thus charge neutrality) within 
(equation (2.05) of Lennard-Jones and Dent (1928)). 

On the other hand, more terms are needed for the lattice sum expression (24) which 
involves the sum over charges. However it is evaluated over unit cells in a two- 
dimensional reciprocal space over a similar range of summation compared to (1). The 
actual space covered is smaller. For a given z,, i.e. ions within the same layer, and  for 
all positions (x, y ,  z ) ,  the contribution to the potential from terms with one or both k,  
and k ,  even were found to be equal. For a (100) NaCl surface, the charge neutrality 
condition among these four ions in a unit cell will make the sum of these terms zero 
and  will thus mean that only both odd k,  and k, are needed to be summed. The 
summing of (24) over only odd k, and k, terms reduces the number of terms by 
between 50'10, if summed over a smaller radius, to 75%, if summed over a larger radius 
but with more terms. Although the result over odd  ( k x ,  k , )  only does not differ from 
the full sum, its speed convergence is still many times slower than (1). 

The electrostatic potential obtained by both methods are identical. This is expected 
since both the lattice sum and the Poisson equation are based on the same idea of 
linear superposition of the various contributions to the potential and they are equivalent 
methods. The identical behaviour of the potential expressions (1) and (24) obtained 
from two theoretically equivalent methods is most encouraging since it verifies the 
correctness of our calculation and  there is no other means available for such checking. 
At an adsorption site, the electrostatic potential energy was found to be about 0.3 eV. 
This value is in agreement with direct summation (Chernov and Bulakh 1981). 

The potential, plotted in figure 1 as a function of z / a ,  is short ranged as we would 
expect from the cancellation of the approximately equal contributions due to the 
opposite charges nearby. The shape of the potential gradually flattens to zero for all 
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r Contact distance 
I 

2 - 0.5 1.0 1.5 
2 0  -m- 
L r i a  m 

4 
r m .  I .- 1 

w c w -  

2 - 0.5 1.0 1.5 
2 0  -m- 
L r i a  m 

4 
r m .  I .- 1 

w c w -  

c 

a 

Figure 1. Electrostatic potential energy of an ion near the surface of an NaCl type crystal. 
a = 630 pm. A, this work; R, Smith (1983); 0, pair Coulomb potential. 

z when x and/or  y + 0 at which complete cancellation of interaction due  to the symmetry 
of the NaCl lattice occurs 

The electrostatic potential energy at a distance above a 2~ or one layer KCl ion 
array, which was evaluated from (1) without the sum over nz using the same limit of 
summation as in the 3~ semi-infinite case was found to be 1% larger. The difference 
is smaller than to those obtained from the unconverged 3D potential summed with 
fewer terms over n, and ny or along the x and y directions. In the derivation of the 
potential for the 3~ half-space sum (24) and the solution of the Poisson equation ( l ) ,  
the contribution to the potential from the underlying ionic arrays is represented as the 
sum of a geometric series over n, with a negative common factor less than 1 or  
(-exp( -2vIkl)). The exponential decay of the subsequent terms in the series suggests 
that only the leading term(s) are significant. This is expected physically as the contribu- 
tion to the potential from the next layer of ions underneath, which is of opposite 
charge to the corresponding ones above, always reduce the total. The small difference 
between the potential due to a 2~ array and  a 3~ array (of semi-infinite depth) and 
the small number of terms needed for the evaluation of both (1) and  (24) which are 
the results of a transformation of the respective potential functions into new expressions 
and, in the case of (24), reciprocal lattice space, has demonstrated their computational 
convenience over the direct summation. 

We could not calculate the surface electrostatic potential using formulae developed 
from one of our previous studies (Hoskins et a1 1977) because the asymptotic expansion 
term remains divergent. Calculation of the electrostatic potential using the transforma- 
tion developed in Smith (1983) was more computationally elaborate. The electrostatic 
potential is similar to that obtained using either (1) or (24) except that it has a few 
fluctuations near the surface. The electrostatic potential energy at an  adsorption site 
was found by us to be 0.47 eV, much higher than those calculated in (1) and (24) and 
others. 

5. Conclusion 

The derivation of a simple formula like (1) for calculating the electrostatic potential 
at a (100) surface of a KCl type crystal is possible as a result of its especially simple 
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lattice structure. In such a formula, only terms with both components of the reciprocal 
lattice vector odd are needed. This formula gives lattice sums which converge rather 
more quickly than the one derived here. Our formula (24) applies to any surface of 
a crystal made of whole unit cells with zero charge and net dipole moment per unit 
cell. Under these circumstances no terms which depend on the shape of the piece of 
crystal appear, in agreement with our earlier prediction (Smith 1983) on macroscopic 
shape-dependent potentials. 

While the lattice sum derived here converges rather slower than that in  ( i ) ,  it is 
very general and can be applied to problems where the Poisson equation approach 
gives the wrong answer. A typical example is the potential near the (111) surface of 
KCI (Lennard-Jones and Dent 1928), where special mathematical difficulties arise 
because the unit cell dipole moment has a non-zero component normal to the surface. 
These are easily handled in our approach. They give rise to a diverging macroscopic 
shape-dependent potential (Smith 1986). Our method also shows how to handle this 
divergence by imposing an excessive layer of charge on the surface with surface charge 
density exactly that needed to act as a sink (or source) for the flux of the dipole 
moment per unit cell through the surface. Only with such an excess surface charge 
can such a surface be physically stabilised. 

Experimentally a KCl crystal with { 11 1) faces can be grown from a supersaturated 
solution containing Pb2+ ions. The added impurity ions presumably fulfil the energetic 
requirements, in addition to its similar size to K+. As crystal growth progresses, these 
impurity ions are incorporated into the crystal in trace amounts with uniform spatial 
distribution (Cheng 1982). The gradual depletion of the added impurity ions in the 
solution phase can eventually result in crystals with both { 100) and { 11 1) faces. 

For other real NaCl type crystals the surface binding energy and, because of the 
same form of the lattice sum expression for calculating bulk potential, the bulk energy 
at a lattice site are inversely proportional to a and therefore the contribution of 
electrostatic potentials to the AH of adsorption, solution or evaporation of these 
crystals behaves in the same manner. 

Acknowledgment 

We would like to thank Professor D J Newman, Department of Physics, University of 
Hong Kong for valuable suggestions on the manuscript. 

References 

Cheng V K W 1982 unpublished results 
Cheng V K W, Coller B A W and Smith E R 1986 J.  Chem. Soc. Faraday Trans. submitted 
Chernov A A and Bulakh M 1981 J.  Crysr. Growth 52 39 
Glasser M L and Zucker I J 1980 Tneorerical Chemistry: Advances and Perspecrives vol 5 (New York: 

Hoskins C S, Glasser M L and Smith E R 1977 J.  Phys. A :  Math. Gen. 10 879 
Hove J E 1955 Phys. Rev. 99 430 
Lennard-Jones J E and Dent M 1928 Trans. Faraday Soc. 24 92 
Schwalm W A 1982 Am. J. Phys. 50 444 
Smith E R 1982 h o c .  R. Soc. A 381 241 
- 1983 Physica 120A 327 
- 1986 Mol. Phys. 57 193 

Academic) p 67 


